
Crypto Bubbles Web App: Responses and
Project Architecture

Yashvardhan

January 21, 2025

Questions and Responses

Q1 Where should we host the application?

The application can be hosted as follows:

• Frontend: Host the frontend using Vercel or Netlify for efficient static file
hosting and serverless functions.

• Backend: Deploy the backend on platforms likeAWS,Render, orHeroku.
For an all-in-one approach, consider using Firebase Hosting combined with
Firestore for the database.

Q2 Which Blockchain API should we use to return the price, market cap,
and volume?

I recommend using the CoinGecko API, as it offers reliable, real-time data for
market cap, price, and volume with generous free-tier limits. Alternative APIs
include:

• CoinMarketCap API (paid plans for advanced features)

• CryptoCompare API

• Messari API (detailed metrics but costlier)

Q3 How would the scraper work for https://cookie.fun?

The scraper will:

(a) Inspect the HTML and network calls to understand the data structure.

(b) Use Python libraries like BeautifulSoup and Requests for static content,
or Selenium/Playwright for dynamic JavaScript content.

(c) Extract and filter tokens that are at least 13 days old.

(d) Automate scraping at regular intervals using Cron Jobs or Celery.

Q4 We should implement caching, so we reduce the number of API calls.
How would you do it?

To reduce API calls, caching will be implemented as follows:

1



• Server-Side Caching: Use Redis or Node.js LRU Cache to temporarily
store API responses, with a TTL of 15-30 minutes.

• Client-Side Caching: Use React Query to cache API responses in the
frontend.

• Conditional Requests: Utilize API headers like ETag or Last-Modified
to avoid unnecessary re-fetching of data.

• Database Caching: Store scraped data in MongoDB/PostgreSQL, and
update it via background tasks.

Q5 I have the Buy notification script ready in Python. Should you integrate
it in the code or access it via Webhook/API from the other script?

The Python script should be accessed via aWebhook/API for better modularity.
Here’s why:

• The Python script can remain independent, making it reusable for other
services or platforms.

• Easier maintenance and debugging, as updates to the script will not affect
the main application.

• Host the script as a service using FastAPI, Flask, or Django, and expose
endpoints for fetching notifications.

2



Project Architecture

Step 1 Frontend:

• Built using Next.js for Server-Side Rendering (SSR) and API routes.

• Charts and bubbles implemented with D3.js or Chart.js.

• Styling with Tailwind CSS for responsiveness.

• Includes a modal for detailed token information (price chart, links to Trad-
ingView/Dexscreener, market cap, volume, etc.).

Step 2 Backend:

• Developed using Node.js with Express.js.

• Data caching handled by Redis.

• API integration with CoinGecko for token data.

• Database: MongoDB for storing token data, user subscriptions, and buy
notifications.

Step 3 Scraper:

• Built with Python (BeautifulSoup, Requests, or Selenium for dynamic
content).

• Periodic scraping automated with Celery or Cron Jobs.

• Filters tokens to include only those older than 13 days.

Step 4 Notifications:

• The Python buy notification script runs independently as a microservice.

• Notifications are fetched via a Webhook/API and displayed on the right-hand
panel.

Step 5 Payment Integration:

• Use Coinbase Commerce or BitPay for crypto payments.

• Use Stripe API for fiat currency subscriptions.

Step 6 Mobile App:

• Develop a Progressive Web App (PWA) for cross-platform usage.

• Optionally, extend functionality into a React Native app for mobile devices.

3


